1,726 research outputs found

    Probing the symmetry energy and the degree of isospin equilibrium

    Get PDF
    The rapidity dependence of the single- and double- neutron to proton ratios of nucleon emission from isospin-asymmetric but mass-symmetric reactions Zr+Ru and Ru+Zr at energy range 100∼800100 \sim 800 A MeV and impact parameter range 0∼80\sim 8 fm is investigated. The reaction system with isospin-asymmetry and mass-symmetry has the advantage of simultaneously showing up the dependence on the symmetry energy and the degree of the isospin equilibrium. We find that the beam energy- and the impact parameter dependence of the slope parameter of the double neutron to proton ratio (FDF_D) as function of rapidity are quite sensitive to the density dependence of symmetry energy, especially at energies Eb∼400E_b\sim 400 A MeV and reduced impact parameters around 0.5. Here the symmetry energy effect on the FDF_D is enhanced, as compared to the single neutron to proton ratio. The degree of the equilibrium with respect to isospin (isospin mixing) in terms of the FDF_D is addressed and its dependence on the symmetry energy is also discussed.Comment: 10 pages, 2 figure

    The influence of reconstruction criteria on the sensitive probes of the symmetry potential

    Full text link
    Different criteria of constructing clusters and tracing back Δ\Delta resonances from the intermediate-energy neutron-rich HICs are discussed by employing the updated UrQMD transport model. It is found that both the phase-space and the coordinate-density criteria affect the single and the double neutron/proton ratios of free nucleons at small transverse momenta, but the influence becomes invisible at large transverse momenta. The effect of different methods of reconstructing freeze-out Δ\Deltas on the Δ0/Δ++\Delta^0/\Delta^{++} ratio is strong in a large kinetic energy region.Comment: 8 pages, 7 fig

    Re-visit the N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a probe of EoS of asymmetric nuclear matter

    Get PDF
    The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of Isospin dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coe cient. The uncertainties about the symmetry energy coe cient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei

    Transport model analysis of femtoscopy data at RHIC energies

    Get PDF
    The pion source as seen through HBT correlations at RHIC energies is investigated within the UrQMD approach. We find that the calculated transverse momentum, centrality, and system size dependence of the Pratt-HBT radii R_L and R_S are reasonably well in line with experimental data. The predicted R_O values in central heavy ion collisions are larger as compared to experimental data. The corresponding quantity sqrt R_O^2-R_S^2 of the pion emission source is somewhat larger than experimental estimates

    Transport model study of the mTm_T-scaling for Λ\Lambda, K, and π\pi HBT-correlations

    Get PDF
    Based on the microscopic transport model UrQMD in which hadronic and string degrees of freedom are employed, the HBT parameters in the longitudinal co-moving system are investigated for charged pion and kaon, and Λ\Lambda sources in heavy ion collisions (HICs) at SPS and RHIC energies. In the Cascade mode, ROR_O and the RLR_L at high SPS and RHIC energies do not follow the mTm_T-scaling, however, after considering a soft equation of state with momentum dependence (SM-EoS) for formed baryons and a density-dependent Skyrme-like potential for ``pre-formed'' particles, the HBT radii of pions and kaons and even those of Λ\Lambdas with large transverse momenta follow the mTm_T-scaling function R=3/mTR=3/\sqrt{m_T} fairly well.Comment: 6 pages, 5 fig

    Re-visit the N/Z ratio of free nucleons from collisions of neutron -rich nuclei as a probe of EoS of asymmetric nuclear matter

    Full text link
    The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of Isospin dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.Comment: 15 pages, 6 figures, 2 tables. accepted by Commun. Theor. Phys. (Beijing, China

    Production and rescattering of strange baryons at SPS energies in a transport model with hadron potentials

    Full text link
    A mean-field potential version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is used to investigate the production of strange baryons, especially the Λ\Lambdas and Λ‾\overline{\Lambda}s, from heavy ion collisions at SPS energies. It is found that, with the consideration of both formed and pre-formed hadron potentials in UrQMD, the transverse mass and longitudinal rapidity distributions of experimental data of both Λ\Lambdas and Λ‾\overline{\Lambda}s can be quantitatively explained fairly well. Our investigation also shows that both the production mechanism and the rescattering process of hadrons play important roles in the final yield of strange baryons.Comment: 15 pages, 7 figure

    Transport model study of nuclear stopping in heavy ion collisions over an energy range from 0.09A GeV to 160A GeV

    Full text link
    Nuclear stopping in the heavy ion collisions over a beam energy range from SIS, AGS up to SPS is studied in the framework of the modified UrQMD transport model, in which mean field potentials of both formed and "pre-formed" hadrons (from string fragmentation) and medium modified nucleon-nucleon elastic cross sections are considered. It is found that the nuclear stopping is influenced by both the stiffness of the equation of state and the medium modifications of nucleon-nucleon cross sections at SIS energies. At the high SPS energies, the two-bump structure is shown in the experimental rapidity distribution of free protons, which can be understood with the consideration of the "pre-formed" hadron potentials.Comment: 15 pages, 7 figure
    • …
    corecore